
A comprehensive guide to mastering

fundamentals, patterns, and examples

of agentic architectures.

Agentic
Architectures
for retrieval-intensive
applications

2

Agentic Architectures | weaviate Ebook

Contents

Introduction

Fundamentals of agentic architectures

Components of AI agents

Single-agent vs. multi-agent architectures

Patterns in multi-agent architectures

Examples of agentic architectures

Revisiting naive RAG architecture

Single-agent architecture

Multi-agent architectures

Summary

2

3

7

11

Introduction

The landscape of artificial intelligence (AI) is undergoing a profound transformation with
the emergence of AI agents. As we move beyond traditional programming paradigms, AI
agents represent a new frontier in creating more sophisticated, autonomous, and
capable AI systems. This e-book is your comprehensive guide to understanding agentic
architectures, especially for retrieval-intensive applications.

Whether you're building a single-agent system or orchestrating a complex multi-agent
network, the principles and patterns we'll explore will provide a solid foundation for your
journey into agentic architectures.

https://weaviate.io/blog/ai-agents

Agentic Architectures | weaviate Ebook

Fundamentals of

agentic architectures
Agentic architectures are composed of one or more agents with memory and
access to tools. This section discusses the components of AI agents and the
atomic patterns in agentic architectures. We will discuss important considerations,
such as when to use more than a single agent or how to connect multiple agents in
a multi-agent architecture.

3

Components of AI agents
Although AI agents are designed for autonomous decision-making, they rely on a larger framework
of components to function properly. This framework is referred to as its architecture. It consists of
a Large Language Model (LLM) with a task and a role, which enables the agent to reason
effectively, tools that help the agent complete its tasks, and memory that allows the agent to learn
from past experiences.

Agent Runtime

Short-term

Long-term

Memory

has access to

LLM

Planning

Reflection

Reasoning

AI agent

Vector search

engine

...

Web search

Tools

Task

Role

Prompt (Instructions)

Agentic Architectures | weaviate Ebook

Vector databases in agentic architectures
Vector databases can be used for different purposes in agentic architectures.

4

Tools

Vector databases are most commonly used as
tools for agents as part of Retrieval-Augmented
generation (RAG) pipelines.

In this case, the tool is a custom search tool that
connects to a vector database. The vector
database acts as an external knowledge source
and stores your own proprietary unstructured data,
such as text or images. The agent can call the
search tool to conduct a vector, hybrid, or keyword
search over the connected vector database.

In an agentic Rag pipeline, an AI agent retrieves
information from external knowledge sources and
uses it to answer user queries.

Memory

Vector databases can also be used for memory in
agentic architectures. Storing information about
past interactions in a vector database allows
agents to retrieve information from memory
semantically.

Memory enables capturing and storing context and
feedback across multiple interactions and sessions. Short-
term memory stores more immediate information, like
conversation history, which helps the agent determine
which steps to take next to complete its overall goal.
Long-term memory stores information and knowledge
accumulated over time, allowing for personalization of the
agent and improved performance over time.

Tools expand the capabilities of AI agents beyond the
knowledge of their original dataset and allow them to
dynamically interact with external resources and
applications, real-time data, or other computational
resources. These tools are used to perform specific tasks,
like searching the web, retrieving data from an external
database, or reading or sending emails that help the agent
achieve their target.

Reasoning enables AI agents to actively “think” throughout
the problem-solving process. In agentic architectures,
reasoning serves two key functions: planning, where the
agent decomposes complex tasks into smaller steps and
selects appropriate tools, and reflecting, where it
evaluates outcomes and iteratively adjusts its approach
based on results and external data.

https://weaviate.io/blog/introduction-to-rag
https://weaviate.io/blog/introduction-to-rag
https://weaviate.io/blog/what-is-agentic-rag

Agentic Architectures | weaviate Ebook

5

Single-agent vs. multi-agent architectures
When building an agentic system you can build either a single-agent or a multi-agent
architecture. Agentic AI systems use an LLM as the brain of the operation. This LLM has access
to tools. At any given time, the LLM evaluates whether a tool is useful to solve (a part of) the
query. This is referred to as a 'single-agent architecture'.   

However, it also sometimes makes sense to initialize multiple agents, each responsible of solving
a certain group of tasks. These are called 'multi-agent architectures'. Often, we may still have one
agent (LLM) acting as the lead of the whole operation: the main agent.

The choice depends on your use case and how complex the required agent actions are.

As you can see both, single-agent and multi-agent architectures have both strengths and
weaknesses. Single-agent architectures are ideal when the task is straightforward and well-
defined and you don’t have specific resource constraints. On the other hand, multi-agent
architectures are helpful when the use case is complex and dynamic, requires more specialized
knowledge and collaboration, or has scalability and adaptability requirements.

Note that each agent is equipped with its own memory here. However, you can also have
memory for the compositional agentic architecture.

have multiple AI agents collaborating to resolve tasks.

Multi-agent architectures

Strength
 Capable of handling complex and dynamic tasks
 Capable of parallel processing for efficiency
 Possible to use smaller models specialized for distinct tasks.

Weaknesse
 Increased complexity due to multiple agents collaborating with each other
 Requires robust mechanisms to manage interactions
 Harder to debug and optimize due to added complexity
 May require more resources as more agents are added to the system.

Single-agent architectures
have a single AI agent that independently resolves tasks.

Strength
 Low complexity and thus easier to develop and manage
 No coordination between multiple agents required
 May require fewer computational resources for a single powerful agent than

multiple less powerful agents.

Weaknesse
 May struggle with complex or dynamic tasks
 Limited in handling tasks that require collaboration or diverse expertise
 Agent can get confused and use incorrect tool call arguments if the agent has

too many different tool options available
 May require a larger, more expensive model to handle multiple reasoning steps.

AI agent

MemoryMemory

ToolTool
AI agent

AI agent
User

Memory

Tool

AI agent
User

Memory

Tool

Agentic Architectures | weaviate Ebook

Patterns in multi-agent systems
As the name suggests, multi-agent systems consist of multiple agents working together to solve
complex tasks. These systems can be structured using various design patterns, each having its own
strengths and weaknesses. These patterns are atomic and not mutually exclusive. That means you
could design a multi-agent system that, e.g., has routers, loops, and parallel design patterns.  

If these patterns sound familiar to you, it’s because there’s nothing new here. We’re borrowing the
design patterns of connecting components from other domains, such as software engineering.
Thus, this section is only intended as a refresher of possible patterns.

Agents operate in iterative cycles, continuously
improving their outputs based on feedback from
other agent(s).

Example: Evaluation use cases, such as code
writing and code testing.

Loop

Multiple agents work simultaneously on
different parts of a task.

Parallel

Tasks are processed sequentially, where one
agent’s output becomes the input for the next.

Example: Multi-step approvals.

Sequential

A central router determines which agent(s) to
invoke based on the task or input.

Router

Agents contribute outputs that are collected
and synthesized by an aggregator agent into
a final result.

Aggregator
or synthesizer

Agents are organized in a tree-like structure, with
higher-level agents (supervisor agents) managing
lower-level ones.

Hierarchical
or vertical

Pros

 Clear division of roles and responsibilities
among agents at different levels

 Streamlined communicatio

 Suitable for large systems with a structured
decision flow.

Cons

 Failure at upper levels can disrupt the entire
system

 Lower-level agents have limited independence.

Agents communicate directly with one another in a
many-to-many fashion, forming a decentralized network.

Network
or horizontal

Pros

 Distributed collaboration and group-driven
decision-making

 The system remains functional even if some
agents fail.

Cons

 Managing communication among agents can
become challenging

 More communication may cause inefficiencies
and the possibility of agents duplicating efforts.

AI agent

AI agent

In Out

6

AI agent AI agent
In Out

AI agent AI agent
In Out

AI agent
In

Out

Out

AI agent
Out

In

In

Out

AI agent

AI agent

AI agent

In

AI agent

AI agent

AI agent

In

Out

Agentic Architectures | weaviate Ebook

Examples of

agentic architectures
This section discusses a few examples of architectures for agentic RAG
pipelines. The overall architecture depends on your use cases’ requirements.
For less complex use cases, a simple single-agent router architecture may be
sufficient, while for more complex use cases, a multi-agent architecture with
specialized agents may be necessary.

Revisiting naive RAG architecture
Before diving into the variety of different agentic architectures for retrieval-intensive use cases,
let’s revisit the naive RAG architecture to remind us of its limitations.

The naive (non-agentic) RAG architecture usually consists of an embedding model, a vector
database, and a generative LLM. This non-agentic naive approach is a one-shot solution that
uses the user query directly to retrieve additional information and then uses the retrieved
information directly in the prompt.

While the beauty of the naive approach lies in its simplicity, it leaves a lot of room for errors:

 The raw user query without any further processing might not be suitable for vector
search as sometimes rewording or usage of metadata filters can be useful for better
retrieval performance. Also, some user queries are complex and may require
decomposition into smaller queries for improved processing

 There is no validation step to determine whether the retrieved information is relevant
to the user query

 Information is only retrieved once.

Query

Response

Embedding model

Vector database

LLM

7

Agentic Architectures | weaviate Ebook

Single-agent

architecture
In a single-agent RAG architecture, a
multipurpose agent is responsible for
retrieving the required information
and generating the response based
on that information.

As you can see, the majority of the agentic workflow in a multipurpose RAG agent revolves around improving retrieval. Therefore, in
some use cases, it might make sense to scope out specialized agents with dedicated tasks and roles at which they can accelerate.
 

For example, you could scope out an agent specialized for retrieving information from external knowledge sources (query agent)
which is specialized for query decomposition, query routing, query transformation, and evaluation.

8

On the left, you can see an example
agentic workflow of how this
multipurpose agent can retrieve
additional information to generate a
more factual, accurate answer.

Vector search Web search

Vector

database

User input Response

Agent

Generate answer

Search
Tools

Decompose query

into sub-queries

Memory

Answered
this question

before?

Additional
information
required?

Retrieved
information
relevant?

for each
sub-query

User query

Response

YES

YES

YES

NO

NO

NO

Query routing & processing 
(e.g., extract metadata filters)

 First, the agent accesses memory to check if the query has been answered before, and decides if the
question can be answered directly from memory

 If the question hasn’t been answered before, the agent can reason and evaluate if the question requires
any additional information to answer the user query

 If the agent decides it needs additional information, it can analyze the user query. If the user query is
complex, the agent can decompose the it into simpler sub-queries.  

Query decomposition 
Query decomposition is a technique that breaks down complex queries into simpler sub-queries. This is
useful for answering multifaceted questions requiring information from different knowledge sources. Thus,
decomposing complex user queries into sub-queries can lead to more precise and relevant search results

 The agent can then route the user query (or the sub-queries) to the most suitable knowledge source
(query routing) and even determine additional function arguments (e.g., extract metadata filters) before
calling the search function.  

Query routing 
If you have at least two external knowledge sources, the agent can decide which one to retrieve additional
context from. Note, that the external knowledge sources don't have to be limited to (vector) databases.
You can retrieve further information from other tools, such as web search tools, as well.   

Query Transformation 
Once a (sub)query is routed to a knowledge source, the agent can perform additional transformations to
format the search query into the right shape for the target search tool to achieve optimal results. For
example if you are retrieving information from a vector database, the agent can determine whether to
conduct a vector, hybrid, or keyword search. Additionally, the agent can extract metadata filters from the
user query or even decide if the retrieved results need to be grouped or otherwise aggregated

 After retrieval, the agent can evaluate the retrieved information.  

Evaluation 
The agent can evaluate the new information within the context of the original user query. For example, the
agent cannot only evaluate if the retrieved information is relevant to answer the user query but it can also
evaluate if it thinks there is missing information. If there is missing or irrelevant information, the agent can
revisit the query processing strategy and decide if it should try a different knowledge source or if it needs
to adjust the query transformations

 Finally, the agent can generate an answer and respond to the user query.

Reasoning

Memory

Tool Use

Legend

https://weaviate.io/blog/what-are-agentic-workflows

Agentic Architectures | weaviate Ebook

Multi-agent architectures

Hierarchical example

Although the single-agent architecture overcomes the static limitations of a naive RAG pipeline, it is
limited to only one agent with reasoning, retrieval, and answer generation in one agent.

Having one multipurpose agent can lead to lower performance if the agent's task is too broad and not
well-defined. Therefore, we discussed on the previous page that scoping out agents with smaller,
more well-defined tasks can help them excel at their specific role, such as splitting the multipurpose
agent into a query agent specialized for retrieval and an agent that generates the answer from the
retrieved information.

If you have a more complex use case, it can be beneficial to chain multiple agents into a multi-agent
architecture. For example, if you have a use case that requires multiple tools or specialized sub-tasks
with specialized agents.   

Now this is where things get interesting, as there are endless possibilities of chaining agents together
in multi-agent architectures. This section by no means aims to be an exhaustive list. Instead, this
section shows examples of architectures and their considerations so you can start building your own
architectures suited for your specific use case.

9

Human-in-the-loop example
If you don’t want to give an agent access to sensitive information, such as an employee’s personal
emails, calendar, or chat messages, you can build a human-in-the-loop architecture. In this case,
you can use a specialized agent that asks for human input before moving on to the next action.

Shared tools example
On the other hand, depending on your use case, it can also be helpful to have different agents
with access to the same tool. For example, if your agents need to have access to central user
information, then it might be necessary to provide them with a search tool over a central database.

Gmail

Slack

Vector search
engine B

Vector search
engine A

Web search

User input

Response
Supervisor

agent

Query

agent

Query

agent

Query

agent

Vector database
Collection A

Vector database
Collection B

Let’s begin with a simple hierarchical architecture, where you have one supervisor agent orchestrating
multiple specialized agents.

For example, you can have one supervisor agent who coordinates information retrieval among multiple
specialized agents for querying information from external knowledge sources (query agents):

One agent could retrieve information from proprietary internal data sources, another agent could
also specialize in retrieving public information from web searches, and a third agent could
specialize in retrieving information from your personal accounts, such as email or chat.

By assigning each query agent by a specialization, you can increase the chances that each agent
excells at its task and provide it only with the tools it requires. Additionally, you can limit the access
to certain tools with sensitive data to ensure data security, for example when using API calls to
personal accounts, such as email, calendars or chat messages.

Gmail

Slack

Vector search

Web searchUser input

User

Response
Supervisor

agent

Query

agent

Query

agent

Vector

database

Vector database
Collection A

Vector database
Collection BVector search

Vector search

Web search

User input

Response
Supervisor

agent

Query

agent

Query

agent

Agentic Architectures | weaviate Ebook

Sequential example
So far, we have looked at hierarchical multi-agent architectures only but if there is no need for a
supervisor agent, you can also choose a network (or horizontal) architecture pattern.

Above you can see an example of a horizontal architecture pattern with three sequential agents
 The first query agent retrieves information based on the user input by calling a vector search

tool
 Then, the second query agent retrieves additional information based on the user input and the

information retrieved by the first query agent by calling a web search tool
 Finally, the last generation agent generates a response based on the user input, the information

from the vector search, and the information from the web search.

Having two separate query agents connected sequentially can be useful when the two agents use
different tools and the second agent acts based on the input of the first agent.

10

Since past interactions can be stored in a vector database acting as memory, a data transformation
agent can also be used on memory. This can be useful if you want to e.g., summarize past
interactions. You could summarize the last five interactions or summarize what has been discussed
about a certain topic.

Memory transformation through tool use

Data inside of databases is not always clean, organised or well separated. Historically these types of
issue would be solved by having a database administrator or teams dedicated to quality and
enrichment having to support massive and complex pipelines to alter or create new views on data.

But what if you could replace this work by an AI agent that transforms user data at insert-time and/or
transforms existing collection data at scale? This agent’s task is to transform existing data to enrich
user data, provide complex data analysis, and transform unsearchable data into searchable formats.

For example, let’s say you have customer reviews and want to add some attributes. You could go
ahead and have the agent generate a new property of attributes so we can later better such
across those. Or you could generate review summaries for a product from all the existing
summaries.

To accommodate such a data transformation, you can incorporate a data transformation agent as
shown below. This agent, instead of having a vector search tool, it would have a data
transformation tool to access the same database as the agent querying the database.

Shared database with different tools example

Vector search Web search

User input Response
Query

agent

Query

agent

Generation

agent

Vector

database

Vector

databaseVector search

Data
transformtion

Web search
User input

Response
RAG

agent

Transformation

agent

Vector

databaseVector search

Data
transformtion

Web search

User input

Response
RAG

agent

Transformation

agent

Memory

Summary

3

This e-book introduced agentic architectures. It discussed the components, which are the
foundational building blocks, and the underlying patterns, which can be combined into an overall
architecture.

Depending on the complexity of your use case, we first discussed the advantages and
disadvantages of single-agent vs. multi-agent architectures. If your task is relatively straight
forward, a single agent approach is often the best choice. However for more complex tasks, multi-
agent architectures offer better quality and flexibility.

Next, we explored some common design patterns in multi-agent architectures and the pros and
cons of each. We also looked at example agentic architectures for retrieval-intensive systems and
how a single-agent setup helps overcome the limitations of naive RAG. However, this approach can
be restrictive as the reasoning, retrieval, and answer generation is limited to one single agent. To
improve this, scoping out agents with smaller, well-defined tasks can help them excel at their
specific roles. Finally, we discussed an AI agent designed to transform user data at insert-time as
well as capable of transforming existing collections at scale.

As you can see, there are many different ways you can build an agentic architecture. This e-book
touched only on a few examples but the possibilities are endless. The examples discussed in this
e-book are solely a starting point to give you a rough idea of what the thought process of scoping
out separate agents can look like and what considerations go into connecting single agents into an
over all architecture.

3

Ready to make your RAG
application agentic?
Start building today with a 14 day free trial
of Weaviate Cloud (WCD).

Try Now

Agentic Architectures | weaviate Ebook

Contact sales

11

https://auth.wcs.api.weaviate.io/auth/realms/SeMI/protocol/openid-connect/auth?client_id=wcs-frontend&scope=openid%20email%20profile&response_type=code&redirect_uri=https%3A%2F%2Fconsole.weaviate.cloud%2Fapi%2Fauth%2Fcallback%2Fkeycloak&state=7GtjVe_MXRAwIKRFaJc2rFDtYfy8v_fCdFL_vHy9tfA&code_challenge=UH1rmLliY3xQnfERebQ306y53bfhFeiVRG41vUDYu7E&code_challenge_method=S256&utm_source=pdf_download&utm_medium=ebook&utm_campaign=agentic_architectures&utm_content=free_trial_cta
https://weaviate.io/contact?utm_source=pdf_download&utm_medium=ebook&utm_campaign=agentic_architectures&utm_content=contact_us_cta

