) weaviate

Context

Engineering

Designing the systems that control what

information reaches the model and how it
maintains coherence.

Table Of Contents

Introduction ‘
@ What Are Agents? 04
Agents The Context Window Challenge . 05
Strategies and Tasks for Agents ... 07
Where Agents Fit in Context Engineering .. 08
Query Rewriting] 10
Query Augmentation Query EXpanSion .. 11
Query Decomposition 12
Query Agents 13
A Guide to Chunking Strategies ... 15
Retrieval Simple Chunking Strategies 17
Advanced Chunking Strategies ... 18
Pre-Chunking vs. Post-Chunking ... 20
Summary 23
9 Classic Prompting Techniques 25
prompting Techniques Advanced Prompting Techniques ... 26
 Prompting for ToolUsage 26
Using Prompt Frameworks . 27
The Architecture of Agent Memory ... 29
Memory Key Principles for Effective Memory Management . 31
The Evolution: From Prompts to Actions ... 35
Tools The Orchestration Challenge 36
The Next Frontier of ToolUse ... 39
@ The Future of Al Engineering. .. 40
Summary

CONTEXT ENGINEERING &) weaviate

Every developer who builds with Large Language Models (LLMs) eventually hits the same
wall. You start with a powerful model that can write, summarize, and reason with
stunning capability. But when you try to apply it to a real-world problem, the cracks start
to appear. It can't answer questions about your private documents. It has no knowledge
of events that happened yesterday. It confidently makes things up when it doesn't know
an answer.

Long-Term Memory

Vector search

% (retrieval) @j

v

Add to "
memory Databases RAG
00000
Agentic coordination
8
l Answer & decision making e

A

2 o

User

A

Update prompt %

Short-Term Memory with answer
000000000y Action Tools
t o

Store all context in
chat history

01 D weaviate

The problem isn't the model's intelligence. The
problem is that it's fundamentally disconnected.
It's a powerful but isolated brain, with no access
to your specific data, the live internet, or even a
memory of your last conversation. This isolation
is a direct result of its core architectural limit:
the context window. The context window is the
model's active working memory—the finite
space where it holds the instructions and
information for the current task. Every word,
number, and piece of punctuation consumes
space in this window. Just like a whiteboard,
once it's full, older information gets erased to
make room for new instructions, and important
details can be lost.

You can't fix this fundamental limitation by just
writing better prompts. You have to build a
system around the model.

That is Context Engineering.

Context Engineering is the discipline of
designing the architecture that feeds an LLM
the right information at the right time. It’s not
about changing the model itself, but about
building the bridges that connect it to the
outside world, retrieving external data,
connecting it to live tools, and giving it a
memory to ground its responses in facts, not
just its training data.

This ebook is the blueprint for that system. We
will cover the core components required to turn
a brilliant but isolated model into a reliable,
production-ready application.

Mastering these components is the difference
between a reasonable demo and a truly
intelligent system. Let's get to work.

CONTEXT ENGINEERING

Agents

The decision-making brain that
orchestrates how and when to use
information.

Query
Augmentation

The art of translating messy,
ambiguous user requests into
precise, machine-readable intent.

+ .
Retrieval

The bridge connecting the LLM to
your specific documents and
knowledge bases.

Prompting
Techniques
The skill of giving clear, effective

instructions to guide the model's
reasoning.

Memory

The system that gives your
application a sense of history and

the ability to learn from interactions.

Tools

The hands that allow your
application to take direct action and
interact with live data sources.

02

As soon as you start building real systems with large language models, you run into the

limits of static pipelines. A fixed recipe of “retrieve, then generate” works fine for simple
Retrieval Augmented Generation (RAG) setups, but it falls apart once the task requires

judgment, adaptation, or multi-step reasoning.

This is where agents come in. In the context of context engineering, agents manage how
(and how well) information flows through a system. Instead of blindly following a script,
agents can evaluate what they know, decide what they still need, select the right tools,
and adjust their strategy when things go wrong.

Agents are both the architects of their contexts and the users of those contexts.
However, they need good practices and systems to guide them, because managing
context well is difficult, and getting it wrong quickly sabotages everything else the agent
can do.

A 4

44 | |Promt ‘—» X
8 : b.'
O

A

A

What Are Agents?

The term "agent" gets used broadly, so let’s define it in the context of building with large
language models (LLMs). An Al agent is a system that can:

Make dynamic decisions about information
flow. Rather than following a predetermined
path, agents decide what to do next based
on what they've learned.

Search

Maintain state across multiple interactions.
Unlike simple Q&A systems, agents
remember what they've done and use that
history to inform future decisions.

User newered Additional DD Decompose Each Query routing Retrieved
—> o information query into sub-query : information
query Leiere! required?, DD sub-queries Slpiocessing relevant?

Q Response % ., Generate <
dt: response

User 4—[Q Response]4— Al Agent Thinking...

03 &) weaviate

o ©

Modify their approach based

Legend
on results. When one strategy
isn’t working, they can try

different approaches.

Use tools adaptively. They can
select from available tools and
combine them in ways that

weren't explicitly programmed.

Single-Agent Architecture

Attempt to handle all tasks themselves, which

ES

works well for moderately complex workflows.

Multi-Agent Architecture

v

Distribute work across specialized agents per
task. Allows for complex workflows but introduces
coordination challenges.

R || S
o
@ -
@
5
R||B||X|| S

CONTEXT ENGINEERING 04

https://weaviate.io/blog/introduction-to-rag?utm_source=ebook&utm_campaign=context-engineering
https://weaviate.io/blog/ai-agents?utm_source=ebook&utm_campaign=context-engineering

Context Hygiene

This is one of the most critical parts of managing agentic systems. Agents don’t just need
memory and tools; they also need to monitor and manage the quality of their own
context. That means avoiding overload, detecting irrelevant or conflicting information,
pruning or compressing as needed, and keeping their in-context memory clean enough to
reason effectively.

The Context Window Challenge

LLMs have limited information capacity because the context window can only
hold so much information at once. This fundamental constraint shapes what
agents and agentic systems are currently capable of.

Every time an agent is processing information, it needs to make decisions about:

What information should remain What should be stored externally

active in the context window and retrieved when needed
What can be summarized or How much space to reserve for
compressed to save space reasoning and planning

It's tempting to assume that bigger context windows solve this

nd

problem, but this is simply not the case. Longer contexts (hundreds of
thousands or even ~1M tokens) actually introduces new failure modes.

Performance often begins to degrade far before the model reaches
maximum token capacity, where agents will become confused, have
higher rates of hallucination, or simply stop performing at the level
they’re normally capable of. This isn’t just a technical limitation, it’s a
core design challenge of any Al app.

05 &) weaviate

Here are some common types of errors that begin to happen orincrease

as context window size grows:

Context

/ /7

/77

500]

XXX
XXX

Context

DEED)

Context

CONTEXT ENGINEERING

Context Poisoning

Incorrect or hallucinated information
enters the context. Because agents
reuse and build upon that context,
these errors persist and compound.

Context Distraction

The agent becomes burdened by too much
past information—history, tool outputs,
summaries—and over-relies on repeating
past behavior rather than reasoning fresh.

Context Confusion

Irrelevant tools or documents crowd the
context, distracting the model and causing
it to use the wrong tool or instructions.

Context Clash

Contradictory information within the
context misleads the agent, leaving it
stuck between conflicting assumptions.

06

Strategies and
Tasks for Agents

07

Context Summarization:
Periodically compressing
accumulated history into
summaries to reduce
burden while preserving
key knowledge.

o
E

Adaptive Retrieval Strategies:

Reformulating queries, switching

Agents are able to effectively orchestrate context
systems because of their ability to reason and
make decisions in a dynamic way. Here are some
of the most common tasks agents are built for
and employ to manage contexts.

O
O

B
Context Pruning: | E B E |

Actively removing
irrelevant or outdated z
context, either with @
specialized pruning models !

or a dedicated LLM tool. [E E]

Quality Validation:
Checking whether
retrieved information is
consistent and useful.

<

A 4

<

minim

(o] [}

knowledge bases, or changing chunking Context Offloadin.g: Storing details
strategies when initial attempts fail. externally and retrieving them only

Change strategy

when needed, instead of keeping
everything in active context.

ol 5

() Q)

v

Dynamic Tool Selection: Instead of dumping Multi-Source Synthesis:
every possible tool into the prompt, agents Combining information from
filter and load only those relevant to the task. multiple sources, resolving
This reduces confusion and improves accuracy. conflicts, and producing

7

A

coherent answers.

_

Pl

A
A
A

1@

A 4

H

R

@3

&) weaviate

A 4

M m

Where Agents Fitin Context Engineering

Agents serve as coordinators in your context engineering system. They don't replace the
techniques covered in other sections, instead, they orchestrate them intelligently. An
agent might apply query rewriting when initial searches are unsuccessful, choose
different chunking strategies based on the type of content it encounters, or decide when
conversation history should be compressed to make room for new information. They
provide the orchestration layer needed to make dynamic, context-appropriate decisions
about information management.

Different types of agents and functions within a context engineering system:

—&]

SUPERVISORS

— . Route to
[Planning | '[ﬂ Specialized

v

EXTERNAL KNOWLEDGE

-~ Working Memory SOURCES

A A

Generate Final J
Response Refine Query
SPECIALIZED AGENTS Send Retrieval
Request
/3 . Data Collection @ .
£J Query Rewriter —> Selector Retriever
— Answer
JR Synthesizer % Tool Router +—
MEMORY CAPABILITIES AND
KNOWLEDGE SOURCES
SHORT TERM MEMORY
v
Send Context
for Synthesis {&} Compressor Return Tool 4i Tools and APIs]
v ‘

Return
Retrieved Vector DB
Facts Knowledge +—
Collections
LONG TERM MEMORY
Vector DB Episodic Eyir:s%dic Web and Search < 4
and Factual Store Mpemory APIs
I Query and Update N
CONTEXT ENGINEERING 08

Query Rewriting

Query rewriting transforms the original user query into a more effective version for
information retrieval. Instead of just doing retrieve-then-read, applications now do a
rewrite-retrieve-read approach. This technique restructures oddly written questions so
they can be better understood by the system, removes irrelevant context, introduces
common keywords that improve matching with correct context, and can split complex

Query
Augmentation

questions into simpler sub-questions.

Raw Query Query Re-writer (LLM) Rewritten Query

. query="API call failure,
HQW do i make troubleshooting

this WQFK when S ———) authentication headers,
s L call keeps rate limiting, network
failing? timeout, 500 error”

One of the most important steps of context engineering is how you prepare and present
the user's query. Without knowing exactly what the user is asking, the LLM cannot
provide an accurate response.

Though this sounds simple, it's actually quite complex. There are two main issues to think
about:

RAG applications are sensitive to the phrasing and specific
keywords of the query, so this technique works by:

Many product builders will often develop
and test chatbots with queries that provide
the request and all additional information

A question that an LLM could understand
well might not be the best format to search

through a vector database with. Or, a query

()
that the LLM would need to understand the term that works best for a vector database 85 LQ_,
question in a succinct, perfectly could be incomplete for an LLM to answer.
punctuated, clear way. Unfortunately, in the Therefore, we need a way to augment the Restructuring Context Keyword
real world, user interactions with chatbots query that suits different tools and steps
Unclear Questions: Removal: Enhancement:

can be unclear, messy, and not complete. In
order to build robust systems, it's important
to implement solutions that deal with all
types of interactions, not just ideal ones.

within the pipeline.

Remember that query augmentation addresses the "garbage in, garbage out" problem at
the very start of your pipeline. No amount of sophisticated retrieval algorithms, advanced
reranking models, or clever prompt engineering can fully compensate for misunderstood
user intent.

09 &) weaviate

Transforms vague or
poorly formed user
input into precise,
information-dense
terms.

CONTEXT ENGINEERING

Eliminates irrelevant
information that
could confuse the
retrieval process.

Introduces common
terminology that
increases the

likelihood of matching

relevant documents.

10

Query Expansion

Query expansion enhances retrieval by generating multiple related queries from a single

user input. This approach improves results when user queries are vague, poorly formed,
or when you need broader coverage, such as with keyword-based retrieval systems.

1

Raw Query

)

Open source
NLP tools

Query Re-Writer (LLM)

Expanded Queries

Natural language processing tools

Free nlp libraries

Open source language processing platforms

NLP software with open source code

However, query expansion comes with challenges

Query Drift:

Expanded queries
may diverge from the
user's original intent,
leading to irrelevant or
off-topic results.

Over-Expansion:

Adding too many
terms can reduce
precision and retrieve
excessive irrelevant
documents.

that need careful management:

&)

Computational
Overhead:

Processing multiple
queries increases
system latency and
resource usage.

&) weaviate

Query Decomposition

Query decomposition breaks down complex, multi-faceted questions into simpler,

focused sub-queries that can be processed independently. This technique is especially

good for questions that require information from multiple sources or involve several

related concepts.

Stagel Stagell
Retriever
Complex Decomposition
Input Query LLM Sub-query 1

Sub-query Responses

Retrieved
Documents

Sub-query 2

&

0

Sub-query 3

A 4
v

=

[Context Window

The process typically involves two main stages:

Decomposition Phase:

An LLM analyzes the original
complex query and breaks it into
smaller, focused sub-queries. Each
sub-query targets a specific aspect
of the original question.

Processing Phase:

Each sub-query is processed
independently through the retrieval
pipeline, allowing for more precise
matching with relevant documents.

After retrieval, the context engineering system must aggregate and synthesize results

from all sub-queries to generate a coherent, comprehensive answer to the original

complex query.

CONTEXT ENGINEERING

12

Query Agents

Query Agents are the most

advanced form of query
augmentation, using Al agents
to intelligently handle the entire
query processing pipeline,
combining the techniques
above.

A query agent takes a user’s
prompt/question in natural
language and decides the best
way to structure the query
based on it's knowledge of the
database and data structure,
and can iteratively decide to re-
query and adjust based on the
results returned.

13

8 User query

TG ST, - - -- -~ - - - - -]

A\ 4

,—>[>-| Construct query] --------------

I
| !

[@ Search] [?:B Aggregation]
()

Execution @ f-------------

v

D .
QD Choose collection |~

—
Vector database] [Vector database

Collection A Collection B

L]
|

Retrieved
information
relevant?

Generate a
text
response?

|:l Response] [El Finalize context

CONTEXT ENGINEERING

1. Analysis: Use generative models (e.g. large language models) to analyze the
task & the required queries. Determine the exact queries to perform.

Dynamic Query Construction: Rather than using predetermined query patterns,
the agent constructs queries on-demand based on understanding both the user
intent and the data schema. This means it can add filters and adjust search
terms automatically to find the most relevant results in the database, as well as
choosing to run searches, aggregations or even both at the same time for you.

2. Query execution: Formulates and sends queries to the agent’s chosen

collection or collections.

Multi-collection routing: The agent understands the structure of all of your
collections, so it can intelligently decide which data collections to query based
on the user's question.

Evaluation: The agent can evaluate the retrieved information within the
context of the original user query. If there is missing information, the agent
can try a different knowledge source or new query.

3. (Optional) Response generation: Receive the results from the database, and use

a generative model to generate the final response to the user’'s prompt/query.

Contextual awareness: The context may also include previous conversation
history, and any other relevant information. The agent can maintain
conversation context for follow-up questions.

&) weaviate

https://docs.weaviate.io/agents/query?utm_source=ebook&utm_campaign=context-engineering

Retrieval

A Large Language Model is only as good as the information it can access. While LLMs are
trained on massive datasets, they lack knowledge of your specific, private documents
and any information created after their training was completed. To build truly intelligent
applications, you need to feed them the right external information at the right time. This
process is called Retrieval. Pre-Retrieval and Retrieval steps make up the first parts of
many Al architectures that rely on context engineering, such as Retrieval Augmented
Generation (RAG).

I) Pre-Retrieval
! [[E] Documents - :[|§| Chunks]

E) Query : >

I I v

I I Retrieval
: : d%o Embedding Model

: : v

E E @ Vector Database

E E Iﬂl Context Augmentation
0 0 > Prompt Template

. . v

E [Q Response }: : d%;o LLM Generation

14 D weaviate

The challenge is simple in concept but tricky in practice: a raw dataset of documents is
almost always too large to fit into an LLM's limited context window (the inputs given to an
Al model). We can't just hand the model an entire set of user manuals or research papers.
Instead, we must find the perfect piece of those documents, the single paragraph or
section that contains the answer to a user's query.

To make our vast knowledge bases searchable and find that perfect piece, we must first
break our documents down into smaller, manageable parts. This foundational process,
known as chunking, is the key to successful retrieval.

Document The Context Window

System prompt

You are a helpful AI assistant...

User query
Chunk What is a vector database?

Relevant chunks

Doc 2; Chunk 1
Doc 2; Chunk 2 Doc 3; Chunk 1

Learn how chunking strategies can help improve your RAG performance and explore different chunking
methods. Read the complete blog post here: weaviate.io/blog/chunking-strategies-for-rag

A Guide to Chunking Techniques

Chunking is the most important decision you will make for your retrieval system's
performance. It is the process of breaking down large documents into smaller,
manageable pieces. Get it right, and your system will be able to pinpoint relevant facts
with surgical precision. Get it wrong, and even the most advanced LLM will fail.

Qo mw @ Ohl = [FHE m |

CONTEXT ENGINEERING 15

https://weaviate.io/blog/chunking-strategies-for-rag?utm_source=ebook&utm_campaign=context-engineering

The Chunking Strategy Matrix

high 4

Precise but Incomplete The Sweet Spot (Optimal Chunks)
Overly small chunks (e.g., Semantically complete paragraphs
single sentences) that are easy that are focused enough to be

- to find but lack the context for found and rich enough to be

Ke) the LLM to generate a good understood.

"

T response.

()

| .

o

© . . .

5 The Failure Zone Rich but Unfindable

=

e

§ Poorly constructed, random Oversized chunks that contain
chunks that are neither the answer but have "noisy"
findable nor useful, the worst embeddings, making them
of both worlds. impossible for the retrieval

system to find accurately.
low high

Contextual richness

When designing your chunking strategy, you must balance two competing priorities:

o Retrieval Precision: Chunks need to be small and focused on a single idea. This
creates a distinct, precise embedding, making it easier for a vector search system to
find an exact match for a user's query. Large chunks that mix multiple topics create

"averaged,” noisy embeddings that are hard to retrieve accurately.

o Contextual Richness: Chunks must be large and self-contained enough to be
understood. After a chunk is retrieved, it is passed to the LLM. If the chunk is just an
isolated sentence without context, even a powerful model will struggle to generate a
meaningful response.

The goal is to find the "chunking sweet spot", creating chunks that are small enough for
precise retrieval but complete enough to give the LLM the full context it needs.

Your choice of strategy will depend on the nature of your documents and the needs of
your application.

16 &) weaviate

Simple Chunking Techniques

Fixed-Size Chunking: The simplest method. The text is split into chunks of a
predetermined size (e.g., 512 tokens). It's fast and easy but can awkwardly cut sentences
in half. Using an overlap (e.g., 50 tokens) between chunks helps mitigate this.

Photosynthesis is one of nature's most vital processes.

chunk 1 chunk 2 chunk 3

overlap overlap

Recursive Chunking: A more intelligent approach that splits text using a prioritized list of
separators (like paragraphs, then sentences, then words). It respects the document's
natural structure and is a solid default choice for unstructured text.

Define a hierarchy of separators

Quantum entanglement is a key concept in quantum 1 (e.g., paragraphs - sentences - words)
physics. It occurs when particles become linked, so the

state of one instantly affects the state of another, no 2 Split the text using the highest-level separator

matter the distance between them
If chunks are too big, split again using the
This connection challenges our understanding of space 3 next separator
and time. When you measure one entangled particle, the
other's state changes instantly. 4 Repeat until all chunks fit within the desired

size while preserving meaning

Document-Based Chunking: This method uses the document's inherent structure. For
example, it splits a Markdown file by its headings (#, ##), an HTML file by its tags
(<p>, <div>), or source code by its functions.

1 Identify logical document boundaries
(e.g., chapters, sections, headings)
- — . - — 2 Group content under each boundary into
Heading This is a heading. --## Subheading This is a cohesive units
subheading. We can continue with more content here. --
This is a second subheading Here is different content. 3 Veseri cerh WGk 66 £ SEdEEms cnlk
4 Store chunks with metadata linking them
to their source document and section

CONTEXT ENGINEERING 17

https://weaviate.io/blog/vector-search-explained?utm_source=ebook&utm_campaign=context-engineering

Advanced Chunking Techniques

Semantic Chunking: Instead of using separators, this technique splits text based on

meaning. It groups semantically related sentences together and creates a new chunk
only when the topic shifts, resulting in highly coherent, self-contained chunks.

The water cycle is a continuous process by which water moves
through the Earth and atmosphere. It involves processes such as
evaporation, condensation, precipitation, and collection. Evaporation
occurs when the sun heats up water in rivers, lakes, or oceans,
turning it into vapor or steam. This vapor rises into the air and cools
down, forming clouds. Eventually, the clouds become heavy and
water falls back to the earth as precipitation, which can be rain,
snow, sleet, or hail. This water then collects in bodies of water,
continuing the cycle.

Split text into sentences or paragraphs

Vectorize windows of sentences

Calculate cosine distance between all pairs

Merge until breakpoint is reached

LLM-Based Chunking: Uses a Large Language Model to intelligently process a document
and generate semantically coherent chunks. Instead of relying on fixed rules, the LLM can
identify logical propositions or summarize sections to create meaning-preserving pieces.

Input text

Propositions

LLM
Alex visited the library. ? Alex visited the fibrary.
He loves reading. Oﬁg@ Alex loves reading.

Agentic Chunking: This takes the concept a step further then LLM-Based Chunking. An Al
agent dynamically analyzes a document's structure and content to select the best chunking

strategy (or combination of strategies) to apply for that specific document.

18

Documents Selecting Method

Chunks Optimized

Chunks

[Fixed-size Chunking

@ Markdown

N
R [Document-based Chunking }—} @ m
Hybrid
= | <) I
CUEIES sl Semantic Chunking
@ Docx format and content

&) weaviate

Hierarchical Chunking: Creates multiple layers of chunks at different levels of detail (e.g.,

top-level summaries, mid-level sections, and granular paragraphs). This allows a retrieval

system to start with a broad overview and then drill down into specifics as needed.

——> Title Chunk 1

» Abstract Chunk 2

Documents
-Method

)

» Intro Chunk 3

:{ Method] Chunk 4]

————— > Reference Chunk5

Late Chunking: An architectural pattern that inverts the standard process. It embeds

the entire document first to create token-level embeddings with full context. Only then is
the document split into chunks, with each chunk's embedding derived from these pre-

computed, context-rich tokens.

“Alice went for a walk in the woods one day
and on her walk, she spotted something. She
saw a rabbit hole at the base of a large tree.
She fell into the hole and found herself in a
strange new world.”

l

Embedding Model

» &
L]
L]
L]

CONTEXT ENGINEERING

Embed the entire document using a
long-context model to generate
token-level embeddings.

Chunk the token embeddings
(instead of the raw text).

Preserve context because the
embeddings were created with full
document context, each token
preserves its relationship to tokens in
neighboring chunks.

Pool strategically instead of pooling all
tokens into one vector, late chunking
pools tokens according to your chunking
strategy to get multiple contextually-
aware embeddings per document.

19

Pre-Chunking vs. Post-Chunking

Beyond how you chunk, a key system design choice is when you chunk. This decision
leads to two primary architectural patterns.

Pre-Chunking

The most common method, where all data processing happens upfront and offline,
before any user queries come in.

Pre-Processing i I Chunke Pre-Chunking

Clean text (remove headers, Split documents into smaller chunks (e.g., 500 tokens
footers, special characters, etc.) per chunk, semantic chunks, hierarchical chunks).

° Retrieval by semantic similarity
8 O%o) Embedding Model J
A v

| @VectorDatabase ’

AN J

Y
¢ Embedded Chunks

@ Retrieved Context

| =] Prompt Template ’ e Augmented

@
HR Output 33;0> Large Language Model e Generation

<2>| Workflow Clean Data & Chunk Documents > Embed & Store Chunks

v| PRO x| CON

Retrieval is extremely fast at query The chunking strategy is fixed. If you
time because all the work has already decide to change your chunk size or
been done. The system only needs to method, you must re-process your

perform a quick similarity search. entire dataset.

20 &) weaviate

Post-Chunking

An advanced, real-time alternative where chunking happens after a document has been
retrieved, in direct response to a user's query.

Pre-Processing B) oocuments
Clean text (remove headers,

footers, special characters, etc.)

8 d%;") Embedding Model ’
R v

[@VectorDatabase ’1

.

@ Retrieved Context Post—Chunking

- [) Retrieve full documents, then chunk and rerank before adding
Chunks o to LLM context window. Store chunked documents.

o Retrieval by semantic similarity

‘ = Prompt Template ’ e Augmented

Bl Output d%’)Large Language Model ’ o Generation

2| Workflow Store Documents -> Retrieve Relevant Document - Chunk Dynamically

v| PRO x| CON

It's highly flexible. You can create
dynamic chunking strategies that are
specific to the context of the user's the first response slower for the end-
query, potentially leading to more user. It also requires more complex
relevant results. infrastructure to manage.

It adds latency. The chunking
process happens in real-time, making

We built a post-chunking strategy into Elysia, our open source agentic RAG framework.
You can read more about that here:
https://weaviate.io/blog/elysia-agentic-rag#chunk-on-demand-smarter-document-processing

CONTEXT ENGINEERING 21

https://weaviate.io/blog/elysia-agentic-rag#chunk-on-demand-smarter-document-processing?utm_source=ebook&utm_campaign=context-engineering

Guide to Choosing Your Chunking Strategy

Chunking)

Fixed-Size

Recursive

Document-
Based

Semantic

LLM-Based

Agentic

Late

Chunking

Hierarchical

22

Splits by token or
character count.

Splits text by
repeatedly dividing
it until it fits the
desired chunk size,
often preserving
some structure.

Splits only at
document
boundaries or by
structural elements
like headers.

Splits text at natural
meaning boundaries
(topics, ideas).

Uses a language
model to decide
chunk boundaries
based on context
and meaning.

Lets an Al agent
decide how to split
based on meaning
and structure.

Embeds the whole
document first, then
derives chunk
embeddings from it.

Breaks text into
multiple levels
(sections >
paragraphs ->
sentences).

Small or simple
docs, or when speed
matters most.

Documents where
some structure
should be
maintained but
speed is still
important.

Collections of
short, standalone
documents or
highly structured
files.

Technical, academic,
or narrative
documents where
topics shift without
clear separators.

Complex text where
meaning-aware
chunking improves
downstream tasks
like Q&A.

Complex, nuanced
documents that
require custom
strategies.

Use cases where
chunks need
awareness of the full
document's context.

Large, structured

documents where
both summary and
detail are needed.

Meeting notes,
short blog posts,
emails, simple FAQs.

Research articles,
product guides,
short reports.

News articles,
customer support
tickets, Markdown
files.

Scientific papers,
textbooks, novels,
whitepapers.

Long reports, legal
opinions, medical
records.

Regulatory filings,
multi-section
contracts,
corporate policies.

Case studies,
comprehensive
manuals, long-form
analysis reports.

Employee
handbooks,
government
regulations,
software
documentation.

&) weaviate

Summary

The effectiveness of your Retrieval Augmentation system is not determined by a single
“magic” bullet, but by a series of deliberate engineering choices. The quality of the
context you provide to an LLM is a direct result of two key decisions:

1. The Chunking Strategy 2. The Architectural Pattern

The "How" The "When"

The method you choose to break The point at which you perform

down your documents. the chunking.

Mastering these two elements is fundamental to context engineering. A well-designed
retrieval system is the difference between an LLM that guesses and one that provides
fact-based, reliable, and contextually relevant answers.

CONTEXT ENGINEERING

23

Prompting
Techniques

Prompt engineering is the practice of designing, refining, and optimizing inputs (prompts)
given to Large Language Models (LLMs) to get your desired output. The quality and
effectiveness of LLMs are heavily influenced by the prompts they receive, and the way
you phrase a prompt can directly affect the accuracy, usefulness, and clarity of the
response.

It's essentially about interacting with Al efficiently: giving it instructions, examples, or
questions that guide the model toward the output you need.

In this section, we'll go over prompting techniques that are essential for improving
Retrieval-Augmented Generation (RAG) applications and overall LLM performance.

Important Note: Prompt engineering focuses on how you phrase
instructions for the LLM. Context engineering, on the other

hand, is about structuring the information and knowledge you
provide to the model, such as retrieved documents, user
history, or domain-specific data, to maximize the model's
understanding and relevance. Many of the techniques below
(CoT, Few-shot, ToT, ReAct) are most effective when combined
with well-engineered context.

24 D weaviate

Classic Prompting Techniques

Chain of Thought

Prompt

This technique involves asking the model
to “think step-by-step” and break down
complex reasoning into intermediate
steps. This is especially helpful when

retrieved documents are dense or contain

conflicting information that requires

careful analysis. By verbalizing its
Response reasoning process, the LLM can come at
more accurate and logical conclusions.

Few-Shot Prompting

Prompt

This approach provides the LLM with a

few examples in the context window that

demonstrate the type of output or m Example
“golden” answers you want. Showing -- -

examples helps the model understand L J
the desired format, style, or reasoning LLM:patternrecognition

(format, style, logic)

i

approach, improving response accuracy

It

Response

and relevance, especially for specialized
or technical domains.

Combining CoT and Few-shot examples is a powerful way to guide both the model’s
reasoning process and its output format for maximum efficiency.

Pro Tip #1: Pro Tip #2:

Make the model reasoning in Chain of Maximize efficiency and reduce
Thought very specific to your use-case. token count, asking the model to
For example, you might ask the model to: reason in a "draft" form, using no

) more than 5 words per sentence.
o Evaluate the environment

o Repeat any relevant information This makes sure that the model's
« Explain the importance of this information thought process is visible while
to the current request reducing output token count.
CONTEXT ENGINEERING 25

Advanced Prompting Strategies

Building on classic techniques, advanced strategies guide LLMs in more sophisticated ways:

Tree of Thoughts (ToT):

v v v

[Thought] [Thought] [Thought]
) X

v v v
[Thought] [Thought] [Thought] [Thought]

! ¢ ¢)
Thought] [Thought J [Thought] [Thought]

i Response

ToT builds on CoT by instructing the model
to explore and evaluate multiple reasoning
paths in parallel, much like a decision tree.

The model can generate several different
solutions to a problem and choose the best
result. This is especially useful in RAG
when there are many potential pieces of
evidence, and the model needs to weigh
different possible answers based on
multiple retrieved documents.

ReAct Prompting:

[Prompt]
v

Thought }—]Actlon

Environment]
Observation]

v

[Response]

This framework combines CoT with agents,
enabling the model to "Reason” (think) and
"Act" dynamically. The model generates both
reasoning traces and actions in an interleaved
manner, allowing it to interact with external
tools or data sources and adjust its reasoning
iteratively. ReAct can improve RAG pipelines by
enabling LLMs to interact with retrieved
documents in real time, updating reasoning
and actions based on external knowledge to
give more accurate and relevant responses.

Prompting for Tool Usage

When your LLM interacts with external tools, clear prompting ensures correct tool

selection and usage.

Defining Parameters and Execution Conditions

LLMs can sometimes make incorrect tool selections or
use tools in suboptimal ways. To prevent this, prompts

should clearly define:

Examples: Include few-shot examples
showcasing correct tool selection and
usage for various queries. For instance:

User Query:
"What's the weather like in Paris?" >
Use Weather_API with city="Paris"

When to use a tool:

Specify scenarios or
conditions that trigger
a particular tool.

26

How to use a tool:
Provide expected
inputs, parameters, and
desired outputs.

User Query:

"Find me a restaurant near the Eiffel
Tower." > Use Restaurant_Search_Tool
with location="Eiffel Tower"

&) weaviate

This very precise guidance, which should be included as part of your overall tool
description, helps the LLM understand the exact boundaries and functionalities of each

available tool, minimizing error, and improving overall system reliability.

@) Pro Tip: How to Write an Effective Tool Description

The LLM's decision to use your tool depends entirely on its
description. Make it count:

Use an Active Verb: Start with a clear action.
get_current_weather is better than weather_data.

Be Specific About Inputs: Clearly state what arguments
the tool expects and their format (e.g., city (string),
date (string, YYYY-MM-DD)).

Describe the Output: Tell the model what to expect in
return (e.g., returns a JSON object with "high", "low",
and "conditions".).

Mention Limitations: If the tool only works for a specific

region or time frame, say so (e.g., Note: Only works for
cities in the USA.).

Using Prompt Frameworks

If you are building a project that requires extensive prompting or want to systematically
improve your LLM results, you could consider using frameworks like: DSPy, Llama

Prompt Ops, Synalinks.

That said, you don’t necessarily need to use a framework. Following the prompting
guidelines outlined (clear instructions, Chain of Thought, Few-shot Learning, and
advanced strategies) can achieve highly effective results without additional frameworks.

Think of these frameworks as optional helpers for complex projects, not a requirement

for everyday prompt engineering.

CONTEXT ENGINEERING

27

https://dspy.ai/
https://github.com/meta-llama/llama-prompt-ops
https://github.com/meta-llama/llama-prompt-ops
https://github.com/SynaLinks/synalinks

When you're building agents, memory isn't just a bonus feature - it's the very thing that
breathes life into them. Without it, an LLM is just a powerful but stateless text processor
that responds to one query at a time with no sense of history. Memory transforms these
models into something that feels more dynamic and, dare we say, more ‘human’, that’s
capable of holding onto context, learning from the past, and adapting on the fly.

Andrej Karpathy gave us the perfect analogy when he compared an LLM’s context
window to a computer's RAM and the model itself to the CPU. In this view, the context
window is the agent's active consciousness, where all its "working thoughts" are held.
But just like a laptop with too many browser tabs open, this RAM can fill up fast. Every
message, every tool output, every piece of information consumes precious tokens.

Peripheral devices I/O

Video Audio
Software 1.0 tools
“classical computer” CPU Ethernet
{ N { ' { '
Calculator Python < > . : Browser
Interpreter Terminal LLM
\. J \. J
Disk RAM
7 A { N\
File System
. +—> +—>
(+embeddings) Other LLMs
\. J \. J \. J

Source: AndrejKarpathy: Software Is Changing (Again)

28 &) weaviate

This is where context engineering becomes an art. The goal isn’'t to shove more data into
the prompt but to design systems that make the most of the active context window -
keeping essential information within reach while gracefully offloading everything else
into smarter, more persistent storage.

Context Offloading is the practice of storing information outside the LLM’s active context window,
often in external tools or vector databases. This frees up the limited token space so that only the most
relevant info stays in context.

The Architecture of Agent Memory

Memory in an Al agent is all about retaining information to navigate changing tasks,
remember what worked (or didn't), and think ahead. To build robust agents, we need to
think in layers, often blending different types of memory for the best results.

Short-Term Memory Long-Term Memory

User: “What’s the weather?”
Episodic Semantic
Al: “It’s sunny, 24°C”
y Procedural

User: “Should | bring ajacket?”

Long-term memory moves past the immediate
context window, storing information externally
for quick retrieval when needed. This is what
allows an agent to build a persistent
understanding of its world and its users over
time. It's commonly powered by Retrieval-
Augmented Generation (RAG), where the agent
queries an external knowledge base (like a
vector database) to pull in relevant information.

Al: “No need, it’'swarm!”

Short-term memory is the agent's
immediate workspace. It's the "now,"
stuffed into the context window to fuel
on-the-fly decisions and reasoning. This
is powered by in-context learning, where
you pack recent conversations, actions,
or data directly into the prompt. This memory can store different kinds of
information, like for example: episodic memory to
store specific events or past interactions, or
semantic memory that holds general knowledge
and facts. This could also be information from
company documents, product manuals, or a
curated domain-knowledge base, allowing the
agent to answer questions with factual accuracy.

Because it's constrained by the model's
token limit, the main challenge is
efficiency. And, the trick is to keep this
streamlined to reduce costs and latency
without missing any details that might be
important for the next processing steps.

CONTEXTENGINEERING 29

https://youtu.be/LCEmiRjPEtQ?si=F7eQ-BpcFn09ENig&t=609

Hybrid Memory Setup Key Principles for Effective Memory

Management

In reality, most modern systems use a hybrid approach, blending short-term memory for
speed with long-term memory for depth. Some advanced architectures even introduce

additional layers: . .
Effective memory management can make or break an LLM agent. Poor memory practices

. Working Memory: A temporary holding area for information related to a specific, lead to error propagation, where bad information gets retrieved and amplifies mistakes

. . . . - . . across future tasks.
multi-step task. For example, if an agent is booking a trip, its working memory might
hold the destination, dates, and budget until the task is complete, without cluttering

the long-term store. Here are some of the starting principles for getting things right:

e Procedural Memory: This helps an agent learn and master routines. By observing
successful workflows, the agent can internalize a sequence of steps for a recurring

task, making it faster and more reliable over time. Prune and Refine Your Memories

Short-Term Memory
Immediate reasoning space, bounded by context limit.

Memory isn't a write-once system. It needs regular maintenance. Periodically
scan your long-term storage to remove duplicate entries, merge related
information, or discard outdated facts. A simple metric for this could be the

Context Window

Query Thought Task State Retrieve Tool Call Thought Response . N)
“Book me a “Need to check “Store the task- “User preferences, “Flights API, “Review the “Respond & then reC e n Cy a n d ret rl eva I fre q U e n Cy. If a m e m 0 ry I S 0 I d a n d ra re I y a CC e S S e d I It
flight to Tokyo budget, dates, specific state in travel domain Weather API, context & clear the state &
in December.” references” the workin knowledge, Calendar, etc.” decide” update memory”
’ memory” booking ruties, ’ ’ might be a candidate for deletion, especially in evolving environments where

etc.”

old information can become a liability.

Task State Storage
the agent sends
specific, in-progress
task details to a
temporary scratchpad
to keep the main
context window from
getting cluttered.

Working Memory

[

L9

Task Context Recall
the agent pulls the
relevant task details
back into its active
reasoning space to
continue a multi-step
process.

A temporary scratchpad or buffer box.

Task Context

» "task_id": "book_flight_o01"

Parameters

« "task_type": "travel_booking"
« "task_status": "in_progress"

« "task_context":

« "destination": "Tokyo"

"dates":

« "departure": "2025-12-15"
e "return": "2025-12-22"

"constraints":

* "budget_max": 1200,

Retrieval

the agent retrieves
relevant knowledge to
inform its current
decision like past travel
preferences, travel
domain knowledge
(airlines, airport codes,
visa rules, etc.), or
learned workflows.

Long-Term Memory
Persistent storage system to retain and recall

1

information across sessions.

@ Episodic Memory
(past events/interactions/preferences)

Memory Storage
after an interaction,
or tool call, the agent
saves important
information, new user
preferences, or
successful outcomes/
workflows to its
permanent memory

for future use.

For example, a customer

or no longer active in the memory. It could just retain the summaries (for trend

support agent might automatically prune
conversation logs that are over 90 days old and marked as resolved, closed,

detection and analysis) rather than full word-to-word transcripts.

Merged

©

X

« "origin": "San Francisco" « "preferred_time": "morning",
* “tools_available”: “ * "preferred_airlines":
["JAL", "ANA"] Semantic Memor
@ y Pruned
(general + domain knowledge)
Next Steps/Results
* "intermediate_results":
« "flights_found": 12
« "top_candidates": Procedural Memory
e "flight": "JAL@@5", "price": 1150, L.
< "flight": "ANA06", "price": 1180, ... (learned routines/decision workflows)
* "next_steps": ["compare_amenities", "check_baggage_policy",

"confirm_selection"]

30

&) weaviate

CONTEXT ENGINEERING

31

Be Selective About What You Store

Not every interaction deserves a permanent spot in long-term storage. One must
implement some sort of filtering criteria to assess information for quality and
relevance before saving it. A bad piece of retrieved information can often lead to
context pollution, where the agent repeatedly makes the same mistakes. One
way to prevent this is to have the LLM "reflect" on an interaction and assign an
importance score before committing it to memory.

500
I

X
X
X

b

Deleted

Tailor the Architecture to the Task

There is no one-size-fits-all memory solution. A customer service bot needs a

Master the Art of Retrieval

Effective memory is less about how much you can store and more about how well
you can retrieve the right piece of information at the right time. A simple blind
search is often not enough, so advanced techniques like reranking (using an LLM
to re-order retrieved results for relevance) and iterative retrieval (refining/
expanding a search query over multiple steps) can be used to improve the quality
of retrieved information.

Tools like the Query Agent and Personalization Agent offer these capabilities out
of the box, enabling searches across multiple collections and reranking based on
user preferences and interaction history.

CEEEE—
{ — Add to
{ /' = \ Context E}
S—_— = = > =)
' = =
_ =
—r —
Expanded Queries Retrieval Reranking

strong episodic memory to recall user history, while an agent that analyzes Ultimately, memory is what elevates LLM agents from simple responders to intelligent
financial reports needs a robust semantic memory filled with domain-specific
knowledge. Always start with the simplest approach that works (like a basic
conversational buffer with last ‘n’ queries/responses) and gradually layer in more

advanced mechanisms as the use case demands it.

context-aware systems. Effective memory isn’t simply a passive storage... It's an active,
managed process! The goal is to build agents that don't just store memory, but
can manage it - knowing what to remember, what to forget, and how to use the past to
reason about the future.

Optional additions:

Semantic Query
Memory Augmentation

5:} 32:’::; . Tools CE:§
4 4

[J Query] E @ E [) Output]
<3 o

D weaviate CONTEXT ENGINEERING 33

If memory gives an agent a sense of self, then tools are what give it superpowers. By
themselves, LLMs are brilliant conversationalists and text manipulators, but they live
inside a bubble. They can't check the current weather, book a flight, or look up real-time
stock prices. They are, by design, disconnected from the living, breathing world of data

and action.

This is where tools come in. A "tool" is anything that connects an LLM agent to the
outside world, allowing it to take direct “action” in the real world and retrieve information
required to fulfill a task. Integrating tools elevates an agent from just being a
knowledgeable consultant to something that can actually get things done.

Context engineering for tools isn't just giving an agent a list of APIs and instructions. It's
about creating a cohesive workflow where the agent can understand what tools are
available, decide correctly which one to use for a specific task, and interpret the results

(o) oD — (o) o
2 H

to move forward.

Q Query

Repeat Until Goal Satisfied

34 &) weaviate

The Evolution: From Prompts to Actions

The journey to modern tool use has been a rapid evolution. Initially, devs tried to get
action out of LLMs with good old prompt engineering by tricking the model into
generating text that looked like a command. It was clever but prone to errors.

The real breakthrough was function calling, aka tool calling. This capability, now native to
most models, allows an LLM to output structured JSON that can contain the name of a
function to call and the arguments to use.

With this, there are a bunch of possibilities:

2] ASimpleTool 7| AChainofTools

A travel agent bot can use a
search_flights tool, and when a
user asks, "Find me a flight to
Tokyo next Tuesday," the LLM
doesn't guess the answer. It
generates a call to the function you
provided, which in turn queries a
real airline API.

For a complex request like "Plan a
weekend trip to San Francisco for
me," the agent might need to chain
several tools together: find_flights,
search_hotels, and
get_local_events. This requires the
agent to reason, plan, and execute
a multi-step workflow.

The work of context engineering here is in how you present these tools. A well-written
tool description is like a mini-prompt that guides the model, making it crystal clear what
the tool does, what inputs it needs, and what it returns.

CONTEXT ENGINEERING

35

The Orchestration Challenge

Giving an agent a tool is easy (mostly). Getting it to use that tool reliably, safely, and
effectively is where the real work begins. The central task of context engineering
is orchestration, i.e., managing the flow of information and decision-making as the agent
reasons about which tool to use.

This involves a few key steps that happen in the context window. Let’'s break down these
key orchestration steps using Glowe, a skincare domain knowledge app powered by our
Elysia orchestration framework, as our running example.

1. Tool Discovery: The agent needs to know what tools it has at its disposal. This is
usually done by providing a list of available tools and their descriptions in the system
prompt. The quality of these descriptions is very critical. They are the agent's only
guide to understanding what each tool does, allowing the model to understand when
to use a tool and, more importantly, when to avoid it.

In Glowe, we configure a set of specialized tools (Step 5) with precise descriptions when initializing
every new chat tree.

2. Tool Selection and Planning (Thought): When faced with a user request, the agent
must reason about whether a tool is needed. If so, which one? For complex tasks, it
might even need to chain multiple tools together, forming a plan (e.g., "First, search
the web for the weather; then, use the email tool to send a summary").

36 &) weaviate

Here, the decision agent correctly analyzed the incoming request and selected the product_agent tool.

3. Argument Formulation (Action): Once a tool is selected, the agent must figure out
what arguments to pass to it. If the tool is get_weather(city, date), the agent needs to
extract "San Francisco" and "tomorrow" from the user's query and format them
correctly. This could also be a structured request or API call with the necessary
information to use the tool.

In this case, the product_agent required a text query for searching the products collection. Notice
how the agent also corrected itself (self-healing) after generating an ill-formed argument that initially
caused an error (another key piece of orchestration).

CONTEXT ENGINEERING 37

https://weaviate.io/blog/glowe-app?utm_source=ebook&utm_campaign=context-engineering
https://weaviate.io/blog/elysia-agentic-rag?utm_source=ebook&utm_campaign=context-engineering

4. Reflection (Observation): After executing the tool, the output (the "observation") is
fed back into the context window. The agent then reflects on this output to decide its
next step. Was the tool successful? Did it produce the information needed to answer
the user's query? Or did it return an error that requires a different approach?

As you can see, orchestration happens through this powerful feedback loop, often called
the Thought-Action-Observation cycle. The agent observes the outcome of its action
and uses that new information to fuel its next "thought," deciding whether the task is
complete, if it needs to use another tool, or if it should ask the user for clarification.

This Thought-Action-Observation cycle forms the fundamental reasoning loop in modern agentic
frameworks like Elysia.

38 &) weaviate

The Next Frontier of Tool Use

The evolution of tool use is moving more and more towards standardization. While
function/tool calling works well, it creates a fragmented ecosystem where each Al
application needs custom integrations with every external system. The Model Context
Protocol (MCP), introduced by Anthropic in late 2024, addresses this by providing a
universal standard for connecting Al applications to external data sources and tools.
They call it "USB-C for Al" - a single protocol that any MCP-compatible Al application can
use to connect to any MCP server.

So, instead of building custom integrations for each tool, developers can just create
individual MCP servers that expose their systems through this standardized interface.
Any Al application that supports MCP can then easily connect to these servers using the
JSON-RPC based protocol for client-server communication. This transforms the MxN
integration problem (where M applications each need custom code for N tools) into a
much simpler M + N problem.

Traditional Integration vs MCP Approach

Traditional: NxM Connections

MCP: N+M Connections

Cloud Storage

Model 2 Cloud Storage
Model 3

Git
Each model needs custom integration
with each data source

9 Total Connections 6 Total Connections

This shift towards composable, standardized architectures, where frameworks enable
developers to build agents from modular, interoperable components, represents the
future of Al tooling. It changes the engineer's role from writing custom integrations to
orchestrating adaptive systems that can easily connect to any standardized external
system.

CONTEXT ENGINEERING 39

https://weaviate.io/blog/elysia-agentic-rag?utm_source=ebook&utm_campaign=context-engineering
https://humanloop.com/blog/mcp

Summary

Context engineering is about more than just prompting large language models, building
retrieval systems, or designing Al architectures. It's about building interconnected,
dynamic systems that reliably work across a variety of uses and users. All the
components described in this ebook will continue to evolve as new techniques, models,
and discoveries are made, but the difference between truly functional systems and the Al
apps that fail will be how well they engineer context across their entire architecture. We
are no longer thinking in terms of just prompting a model, we're looking at how we
architect entire context systems.

Simple Prompt Engineering Context Engineering

Context window Possible context to give model Context window

E System Prompt : . Doc Doc Doc - - System Prompt

: : : Tool Tool Tool : : Doc Doc ——— P
i : ' ! Curation | : Message

s —> —y |[Assistant . Tool Memory File —_— Memory File ——>

{ 3 Message ! ! : H

' f : : : Tool Call

:

X 1

Comprehensive ! : Tool Tool y
Instructions H 4

| =
: [Domain Knowledge l : : :
; : i | Message History |—
: Memory File Doc ! : '

Tool

: : : | Message History I : : ;
K I ¥

Visual inspired by Effective context engineering for Al agents, Anthropic

40 &) weaviate

Context engineering is made up of the components described in this ebook:

o Agents to act as the system's decision-making brain.

Query Augmentation to translate messy human requests into actionable intent.

Retrieval to connect the model to facts and knowledge bases.

Memory to give your system a sense of history and the power to learn.

Tools to give your application hands to interact with live data and APlIs.

We are moving on from being prompters who talk to a model and instead, becoming
architects who build the world the model lives in. We - the builders, the engineers, and
the creators - know the truth: the best Al systems aren’t born from bigger models, but
from better engineering.

We can’t wait to see what you build

Glossary
User LLM Memory
Weaviate Vector
Al A Tool
gent Datatbase ools

https://weaviate.io/contact?utm_source=ebook&utm_campaign=context-engineering
https://console.weaviate.cloud/signin?utm_source=ebook&utm_campaign=context-engineering

